

Environmental Engineering

Department of Civil Engineering University of Massachusetts at Amherst

ĉ

University of Massachusetts Amherst, Massachusetts 01003

~

...

Department of Civil Engineering Environmental Engineering Program

Variability in LC50 Values Determined by Flow-through Vs. Static Fish Toxicity Testing Procedures

Special Report #72-83-3A

Neil M. Ram, James Williams and Kevin C. Sheehan

8/83 1

August 1983

August 1983 Special Report Env. Eng. No. 72-83-3A

Variability in LC50 Values Determined by Flow-through Vs. Static Fish Toxicity Testing Procedures

by

Neil M. Ram, PhD Assistant Professor

James Williams Graduate Research Assistant

and

Kevin C. Sheehan Research Engineer

Department of Civil Engineering Environmental Engineering Program University of Massachusetts Amherst, Massachusetts 01003

Submitted to the

Massachusetts Department of Environmental Quality Engineering Division of Water Pollution Control Anthony D. Cortese, Commissioner Thomas C. McMahon, Director

August 1983

As previously described in Environmental Engineering Publications 72-83-3 and 73-83-2, acute toxicity tests can be conducted using either static (S) or flow-through (Ft) procedures. The static toxicity test is usually considered to be suitable in evaluating compounds which are highly stable and whose toxicity is not associated with high oxygen demand, while flow-through tests are generally appropriate when testing unstable substances or compounds having high BOD's.

The purpose of this report is to review the degree to which these two methods of determining toxicity give rise to different LC50 values. The flow-through procedure has merit since it approximates natural stream conditions more closely than the static bioassay procedure. However, the complexity and cost of apparatus required for the flow-through test may over-ride any advantage it has. The static test, on the other hand, has basic, inexpensive supply requirements. If there does not appear to be a significant difference or any consistent trend in the data generated with the two techniques, the static test may prove preferable due to its simplicity.

Tables 1 through 8 list 96 hour LC50 values for several compounds which have been tested under both static and flow-through conditions. For metals, there does not appear to be any significant trend in terms of the relative magnitudes of the LC50 values generated with flowthrough and static toxicity tests. Copper, for example, did not display any dramatic difference under the two test conditions, while nickel showed somewhat greater toxicity under flow-through conditions. The results for zinc were generally erratic, but the average of the data showed greater toxicity under flow-through conditions.

Several observations can be made with respect to the acute toxicity of organic compounds to fish under flow-through vs. static conditions. Table 6 indicates that comparative acute toxicity data for different organisms under flow-through vs. static conditions varies both with the particular compound as well as with the test organism. The relative flow-through:static toxicity of pyrethrum, for example, was 0.59 for Coho Salmon and 2.1 for Bluegills. RU-11679 displayed greater toxicity to Coho Salmon and Steelhead Trout in flowthrough tests, but was more toxic to channel catfish in static tests. All of the remaining compounds shown in Table 6 displayed consistently greater toxicity under flow-through conditions.

Table 7 illustrates the acute toxicity of a variety of compounds including two insecticides, a lampracide, a wetting agent, and a metal to several fish. Of the two insecticides reported, Malthion proved more toxic under static conditions, while Endrin was more toxic under flow-through conditions. Excluding nickel, all other compounds listed in Table 7 were as or more toxic under static test conditions.

These data indicate that the relative toxicity of a test compound under flow-through vs static test conditions is somewhat variable. As discussed previously, there may be circumstances (excessive oxygen demand, high volalitity) which require use of flow-through test conditions. However, under most circumstances it is our recommendation that static bioassays be conducted over flow-through studies, owing to their lower costs, sampling requirements, and personnel needs, and the corresponding valuable toxicity data obtained from such studies.

1

Tab	1	e	1
-----	---	---	---

Toxicity of Copper Sulfate to the Fathead Minnow at Various Levels of Hardness Under Static (S) and Flow-through (Ft) Test Conditions

Test Type	Hardness (mg/L as CaCO ₃)	LC50 (µg/L) (Expected) ¹	LC50 (µg/L) Observed	Reference .
 Ft	31	83	75	Mount and Stephan (1969)
Ft	46	120	89	Lind
Ft	45	118	121	Lind
Ft	48	125	114	Lind
Ft	200	479	440	Geckler 1976
Ft	200	47 9	490	Geckler 1976
Ft	202	483	460	Pickering 1977
Ft	202	483	490	Pickering 1977
S	20	55	23	Pickering 1977
S	31	83	84	Mount and Stephan 1969
S	200	478	430	Mount 1968
S	360	83 2	1450	Pickering and Henderson 1966

1. Expected LC50 values were calculated from the equation: toxicity = $e^{[.94(\ln hardness)] + 1.19}$ (Ambient water quality criteria)

for copper, 1980)

3

٠.

Table 2

Mean Flow-through (Ft) Vs. Static (S) Toxicity Values of Copper Sulfate to Fathead Minnows¹

Hardness (mg/L as CaCO ₃)	Observed Toxicity (LC50) (µg/L)						
х с	Flow-through		ugh	Static			Ft/S
	Value	n	σ	Value	n	σ	
31	75	1		84	1	-	0.89
200 or 202 ²	470	4	21.21	430	1	-	1.09

- 1. This data is based on values presented in Table 1. The pH, DO, and temperature were relatively consistent between the different studies, and have been shown not to significantly effect toxicity over narrow ranges.
- 2. In four different experiments conducted in waters with hardnesses of 202 mg/L and 200 mg/L as CaCO₃.

•

Table :	3
---------	---

Toxicity of Zinc Sulfate to the Fathead Minnow in Waters of Varying Hardness Under Flow-through (Ft) and Static (S) Conditions

Test Type	Hardness (mg/L as CaCo ₃)	Expected LC50 ¹ (mg/L)	Observed LC50 (mg/L)	References
Ft.	46	4.06	0.6	Benoint and Holcombe, 1966
Ft	50	4.35	12.5	Mount, 1966
Ft	50	4.35	13.8	Mount, 1966
Ft	50	4.35	13.7	Mount, 1966
Ft	50	4.35	6.2	Mount, 1966
Ft	200	13.73	29.0	Mount, 1966
Ft	200	13.73	8.2	Mount, 1966
Ft	203	13.90	8.4	Brungs, 1969
Ft	203	13.90	10.0	Brungs, 1969
S	45	3.98	3.1	Judy and Davies, 1979
S	166	11.76	7.6	Rachlin and Perlmutter, 1968
S	203	13.90	12.0	Brungs, 1969
S	203	13.90	13.0	Brungs, 1969
S	360	22.37	33.4	Pickering and Henderson, 1966

1. Expected LC50 values were calculated from the equation: toxicity = $e^{[0.83(1n \text{ hardness}) + 5.13]}$ (Ambient Water Quality Criteria for Zinc, 1980).

Tab	1e	4
-----	----	---

Mean	Flow-through	(F)	Vs.	Static	(S)	Toxicity	Values	of	Zinc	Sulfate	to	the
				Fat	thea	d Minnow ¹						

.

Hardness (mg/L as	Mean To (mg/L)	Ft/S					
CaCO ₃)	Flow-through			<u>Stat</u>	ic n		
	vaiue	щ 		vaiuc			
203	9.20	2	0.8	12.50	2	0.5	.74
46	0.60	1	-	-	-	-	••
45	-	-		3.10	1	-	.19

1. This data is based on values presented in Table 3.

,

,

Tab	1 e	-5
-----	-----	----

Flow-through (Ft) Vs. Static (S) Toxicity Values of Phenol to Fathead Minnows

Test Type	Hardness ¹ (mg/L as CaCO ₃)	LC50 (mg/L)	Reference
Ft	_	67.5	Ambient Water Quality Criteria, Phenol, 1980
Ft ²	-	36.0	Ruesink and Smith, 1975
Ft ²	-	24.0	Ruesink and Smith, 1975
Ft	-	28.8	Phipps, et al.
S	20	34.3	Pickering and Henderson, 1966
S	360	32.0	Pickering and Henderson, 1966
S	-	32.0	Mattson, et al., 1976
Mean Ft/S		1.19	
Mean Ft/S ³		0.90	

1. Variations in hardness had no apparent effect on toxicity of phenol.

2. Total alkalinity = $218-230 (mg/L \text{ as } CaCO_3)$; pH = 8.0.

3. Excluding flow-through LC50 value equal to 67.5.

Table 6

Toxicity of Pyrethrum Extract and Five Pyrethroids to Fish in Static (S) and Flow-through (Ft) tests at 12° C (March, 1976)¹

· .			96-hr LC50 (ug/I	<u>_)</u> ²
Formulation	Species	Static	Flow- through	Flo w- through/ Static
Pyrethrum (20%)	Coho Salmon	39.0 (33.1-46.0)	23.0 (17.8-29.7)	.590
· ·	Steelhead trout	24.6 (20.4-29.6)	22.5 (19.2-26.3)	.915
	Channel Catfish	114 (95.0-1.37)	132 (117-149)	1.158
	Bluegill	49.0 (39.2-61.3)	104 (80.3-135.0)	2.122
	Yellow Perch	50	44.5 (36.4-54.3)	.888
Dimethrin (96%)	Channel Catfish	1140 (1020-1280)	165 (126-126)	.145
	Bluegil1	37.5 (28.1-50.0)	22.3 (16.7-29.5)	.595
d-transallethrin (90%)	Coho Salmon	22.2 (20.6-23.9)	9.4 (7.91-11.2)	.423
- · ·	Steelhead Trout	17.5 (13.1-23.4)	9.7 (8.0-11.6)	.554
	Channel Catfish	30.2	27.0	.894
Ru-11679 (95%)	Coho Salmon	.635 (.580696)	.151 (.132173)	.238

8

.

Table	6,	continued
-------	----	-----------

	<u>96-hr LC50 (ug/L)²</u>			
Species	Static	Flow- through	Flow- through/ Static	
Steelhead Trout	.110 (.091134)	.100 (.0751330	.909	
Channel Catfish	.630 (.402853)	.700 (.583840)	1.111	
Fathead Minnow	80.0 (65.9-97.1)	53.0 (35.9-78.3)	.663	
Coho Salmon	1.510	.276	.183	
	.450	.275	.611	
Bluegill	2.62 (2.25-3.19)	.275 (.237319)	.105	
Yellow perch	2.36 (1.96-2.84)	.513 (.441597)	.217	
	Species Steelhead Trout Channel Catfish Fathead Minnow Coho Salmon Bluegill Yellow perch	Species Static Steelhead Trout .110 (.091134) Channel Catfish .630 (.402853) Fathead Minnow 80.0 (65.9-97.1) Coho Salmon 1.510 .450 .450 Bluegil1 2.62 (2.25-3.19) Yellow perch 2.36 (1.96-2.84)	Species Static Flow-through Steelhead Trout .110 .100 (.091134) (.0751330) Channel Catfish .630 .700 (.402853) (.583840) Fathead Minnow 80.0 53.0 (65.9-97.1) (35.9-78.3) Coho Salmon 1.510 .276 .450 .275 Bluegill 2.62 .275 Yellow perch 2.36 .513 (1.96-2.84) (.441597)	

1. Hardness for all of the various tests was reported to be between 280 and 320 mg/L as $CaCO_3$.

2. 95% confidence limits are shown in parentheses.

3. For N = 18 organisms and formulations tested:

Ft/S = .523, .685, and .489 as the geometric mean, arithmetic mean and standard deviation, respectively.

Toxicant	Species	Hardness (mg/L as CaCO ₃)	LC50 Ft	(μg/L) Static	Ft/S	Reference	
Tergitol 15-S-9	Bluegi11	40-48	4.80	4.60	1.04	Krzeminski,1975	
Neodo1 25-9	Bluegill	40-48	2.10	2.10	1.0	Krzeminski,1975	
TFM	-	-	3.28	2.85	1.19	U.S.Wildlife and Fish,1975	
TFM	-	-	3.42	2.75	1.24	U.S.Wildlife and Fish,1975	
TFM	-	-	2.15	1.80	1.19	U.S.Wildlife and Fish,1975	
Nicke1	Fathead minnow	-	28.00	32.00	0.88	Pickering,1974	
Nickel	Fathead minnow	-	25.00	27.00	0.93	Pickering,1974	
Malathion	Bluegi11	200	10.45	9.00	1.16	Eaton,1970	
Endrin	Bluegill	116	0.39	0.77	0.51	Lincer,1970	

Ft/S Geometric Mean = 0.98

Ft/S Arithmetic Mean = 1.016

Standard Deviation of Arithmetic mean = 0.288

n = 9

Table 7

Quotients of 96-hr LC50 Values of Flow-through (Ft) and Static (S) Tests Using Bluegill Sunfish and Fathead Minnows as Test Organisms

Test Type	LC50 (µg/L)	Hardness (mg/L as CaCO ₃)	Reference		
Ft	0.50	149	Brungs and Bailey, 1966		
Ft	0.49	149	Brungs and Bailey, 1966		
Ft	0.40	149	Brungs and Bailey, 1966		
Ft	0.45	300	Brungs and Bailey, 1976		
Ft	0.26	149	Brungs and Bailey, 1976		
S	1.10	20	Henderson, et al., 1959		
S	1.40	400	Henderson, et al., 1959		

1. Hardness had no significant effect on toxicity values reported for flowthrough conditions.

2. Mean Ft-LC50 = 0.42; n = 5; σ = 0.087 Mean S-LC50 = 1.250; n = 2; σ = 0.15 Mean Ft/S = 0.336

11

Table 8

Toxicity of Endrin to Fathead Minnows Under Flow-through (Ft) and Static (S) Conditions Benoint, D. A. and G. W. Holcombe. 1978. Toxic effects of zinc on fathead minnows (<u>Pimephales promelas</u>) in soft water. <u>Jour. Fish. Biol.</u>, 13:701.

Brungs, W. A. 1969. Chronic toxicity of zinc to fathead minnows, (<u>Pimephales promelas Rafinesque</u>). <u>Trans. Am. Fish. Soc.</u>, 98:272.

Brungs, W. A. and G. W. Bailey. 1966. Influence of suspended solids on the acute toxicity of endrin to fathead minnows. <u>Proc. 21st Purdue Ind. Waste</u> <u>Conf., Part I</u>, 50:4.

Cairns, J. 1978. Effects of temperature on aquatic organisms sensitivity to selected chemicals. Bull. 106-Virginia Water Resources Center, Blacksburg, VA.

Eaton, J. C. 1970. Chronic malation toxicity to the bluegill (<u>Lepomis</u> <u>Macrochirus Rafinesque</u>). <u>Water Research</u>, 4:673-684.

Geuckler, J. R., et al. 1976. Validity of laboratory tests for predicting copper toxicity in streams. EPA-600/5-76-116.

Henderson, C., Q. H. Pickering and C. M. Tarzwell, 1959. Relative toxicity of ten chlorinated hydrocarbon insecticides to four species of fish. <u>Trans.</u> <u>Am. Fish. Soc.</u>, 88:23.

Judy, R. D., Jr., and P. H. Davies. 1979. Effects of calcium addition as $Ca(NO_3)_2$ on zinc toxicity to fathead minnows (<u>Pimaphelas promelas</u>

Rafinesque). Bull. Environ. Contamin. Toxicol., 22:88.

Krzeminski, S. F. 1975. Susceptibility of bluegill sunfish (<u>Lepomis</u> <u>macrochrirus</u>) to nonionic surfactants. <u>Bull. Environ. Contam. Toxicol.</u>, 13:377-384.

Lin, D., et al. Regional copper-nickel study. Aquatic toxicology progress report (manuscript). From United States Environmental Protection Agency 440/5-80-036.

Lincer, J. L., J. M. Solon and J. H. Nair, III. 1970. DDT and endrin fish toxicity under static versus dynamic bioassay conditions. <u>Trans. Am. Fish.</u> <u>Society</u>, 99:13-19.

Mattson, V. R., et al. 1976. Acute toxicity of selected organic compounds to fathead minnows. EPA-0600/3-76-097.

Mauch, W. L., L. E. Olson and L. L. Marking. 1976. Toxicity of natural pyrethrins and five pyrethroids to fish. <u>Archives of Environmental</u> <u>Contamination and Toxicology</u>, 4:18-29.

Mount, D. I., 1966. The effect of total hardness and pH on acute toxicity of zinc to fish. <u>Int. Jour. Air, Water Pollut.</u>, 10:49.

Mount, D. I. 1968. Chronic toxicity of copper to fathead minnows (<u>Pimephaels promelas Rafinesque</u>). <u>Water Res.</u>, 2:215.

Mount, D. I. and C. E. Stephan. 1969. Chronic toxicity of copper to the fathead minnow (<u>Pimephales promelas</u>) in soft water. <u>Jour. Fish Res. Board.</u> <u>Can.</u>, 26:2449.

Phipps, G. L., et al. The acute toxicity of phenol and substituted phenols to the fathead minnow (Manuscript). From United States Environmental Protection Agency-400/5-80-066.

Pickering, Q. H. 1974. Chronic toxicity of nickel to fathead minnow, <u>Jour.</u> <u>Water Poll. Cont. Federation</u>, 46:760-765.

Pickering, Q. H., et al. 1977. Effect of exposure time and copper concentration on reproduction of the fathead minnow (<u>Pimephales promelas</u>). <u>Water Res.</u>, 11:1079.

Pickering, Q. H., and C. Henderson. 1966. The acute toxicity of some heavy metals to different species of warm water fishes. <u>Air/Water Pollut. Int.</u> <u>Jour.</u>, 10:453.

Rachlin, J. W. and A. Perlmutter. 1968. Response of an inbred strain of platyfish and the fathead minnow to zinc. <u>Prog. Fish-Cult</u>, 30:203.

Ruesink, R. G. and L. L. Smith, Jr. 1975. The relationship of the 96-hr LC50 to the lethal threshold concentration of hexavalent chromium, phenol and sodium penta chlorophenate for fathead minnows (<u>Pimephales promelas</u> <u>Rafinesque</u>). <u>Trans, Am. Fish Soc.</u>, 3:567.

United States Environmental Protection Agency. 1981. Bioassay for toxic and hazardous materials training manual. EPA-430/1-81-026.

United States Environmental Protection Agency. 1980. Ambient water quality criteria for copper. Office of Water Regulations and Standards Division, Washington, D. C. EPA 440/5-80-036.

United States Environmental Protection Agency. 1980. Ambient water quality criteria for endrin. Office of Water Regulations and Standards Division, Washington, D. C. EPA 440/5-80-047.

United States Environmental Protection Agency. 1980. Ambient water quality criteria for nickel. Office of Water Regulations and Standards Division, Washington, D. C. EPA 440/5-80-066.

United States Environmental Protection Agency. 1980. Ambient water quality criteria for phenol. Office of Water Regulations and Standards Division, Washington, D. C. EPA-440/5-80-068.

United States Environmental Protection Agency. 1980. Ambient water quality criteria for zinc. Office of Water Regulations and Standards Division, Washington, D. C. EPA 440/5-80-079.